If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+5x=30
We move all terms to the left:
5x^2+5x-(30)=0
a = 5; b = 5; c = -30;
Δ = b2-4ac
Δ = 52-4·5·(-30)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-25}{2*5}=\frac{-30}{10} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+25}{2*5}=\frac{20}{10} =2 $
| 13d^2=10-13d | | z/12/9=+27 | | 5x^2+5x+30=0 | | -1.25x=2 | | 3/4=15/x+4 | | 11k=+143 | | 3/8=63/x | | 7y+4=3y+6 | | c-4/5=+5/6 | | 2x+x+5=28 | | 57=4x+7x+2 | | 8/3x=8 | | 7z+16=51 | | 14s=+98 | | s*5-25=30 | | 5=2+3g | | m-2/3=+4/3 | | 2-2x3+3=7 | | 50=8(7+7r)-(5r+6) | | 5x−2=−32 | | 5k=+84.05 | | 9(v-3)=2v+22 | | 10+x=-9 | | (6x+26)+(6x+10)=180 | | 2.1p=+0.84 | | 6(x-1.5)=2(x-3.5) | | 11x=221 | | a+24=+15 | | 12-3=9x+27 | | 3/7s=8/9 | | (7x-23)+(3x-17)=180 | | 7=1+2r |